资源类型

期刊论文 160

年份

2023 20

2022 15

2021 13

2020 13

2019 10

2018 7

2017 7

2016 1

2015 7

2014 3

2013 7

2012 6

2011 6

2010 10

2009 7

2008 9

2007 8

2006 2

2004 1

2003 2

展开 ︾

关键词

区块链 2

气体辅助注射成型 2

难加工材料 2

高速切削 2

HIFU 1

LMS 1

Mallat算法 1

Meyer小波变换 1

PV/T 1

SAHP 1

三维扫描振镜 1

三维测量 1

乳腺癌 1

二氧化钛 1

人居辅助环境 1

人工智能 1

仪器生产 1

传输安全 1

信息物理系统 (CPS) 1

展开 ︾

检索范围:

排序: 展示方式:

Recent advances in ultrasonic-assisted machining for the fabrication of micro/nano-textured surfaces

Shaolin XU,Tsunemoto KURIYAGAWA,Keita SHIMADA,Masayoshi MIZUTANI

《机械工程前沿(英文)》 2017年 第12卷 第1期   页码 33-45 doi: 10.1007/s11465-017-0422-5

摘要:

In this paper, the state of art of ultrasonic-assisted machining technologies used for fabrication of micro/nano-textured surfaces is reviewed. Diamond machining is the most widely used method in industry for manufacturing precision parts. For fabrication of fine structures on surfaces, conventional diamond machining methods are competitive by considering the precision of structures, but have limitations at machinable structures and machining efficiency, which have been proved to be partly solved by the integration of ultrasonic vibration motion. In this paper, existing ultrasonic-assisted machining methods for fabricating fine surface structures are reviewed and classified, and a rotary ultrasonic texturing (RUT) technology is mainly introduced by presenting the construction of vibration spindles, the texturing principles, and the applications of textured surfaces. Some new ideas and experimental results are presented. Finally, the challenges in using the RUT method to fabricate micro/nano-textured surfaces are discussed with respect to texturing strategies, machinable structures, and tool wear.

关键词: ultrasonic-assisted machining     textured surface     micro/nano-structures     functional performance    

Vibration characteristics and machining performance of a novel perforated ultrasonic vibration platform

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0730-2

摘要: Ultrasonic vibration-assisted grinding (UVAG) is an advanced hybrid process for the precision machining of difficult-to-cut materials. The resonator is a critical part of the UVAG system. Its performance considerably influences the vibration amplitude and resonant frequency. In this work, a novel perforated ultrasonic vibration platform resonator was developed for UVAG. The holes were evenly arranged at the top and side surfaces of the vibration platform to improve the vibration characteristics. A modified apparent elasticity method (AEM) was proposed to reveal the influence of holes on the vibration mode. The performance of the vibration platform was evaluated by the vibration tests and UVAG experiments of particulate-reinforced titanium matrix composites. Results indicate that the reasonable distribution of holes helps improve the resonant frequency and vibration mode. The modified AEM, the finite element method, and the vibration tests show a high degree of consistency for developing the perforated ultrasonic vibration platform with a maximum frequency error of 3%. The employment of ultrasonic vibration reduces the grinding force by 36% at most, thereby decreasing the machined surface defects, such as voids, cracks, and burnout.

关键词: ultrasonic vibration-assisted grinding     perforated ultrasonic vibration platform     vibration characteristics     apparent elasticity method     grinding force     surface integrity    

Energy field-assisted high-speed dry milling green machining technology for difficult-to-machine metal

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0744-9

摘要: Energy field-assisted machining technology has the potential to overcome the limitations of machining difficult-to-machine metal materials, such as poor machinability, low cutting efficiency, and high energy consumption. High-speed dry milling has emerged as a typical green processing technology due to its high processing efficiency and avoidance of cutting fluids. However, the lack of necessary cooling and lubrication in high-speed dry milling makes it difficult to meet the continuous milling requirements for difficult-to-machine metal materials. The introduction of advanced energy-field-assisted green processing technology can improve the machinability of such metallic materials and achieve efficient precision manufacturing, making it a focus of academic and industrial research. In this review, the characteristics and limitations of high-speed dry milling of difficult-to-machine metal materials, including titanium alloys, nickel-based alloys, and high-strength steel, are systematically explored. The laser energy field, ultrasonic energy field, and cryogenic minimum quantity lubrication energy fields are introduced. By analyzing the effects of changing the energy field and cutting parameters on tool wear, chip morphology, cutting force, temperature, and surface quality of the workpiece during milling, the superiority of energy-field-assisted milling of difficult-to-machine metal materials is demonstrated. Finally, the shortcomings and technical challenges of energy-field-assisted milling are summarized in detail, providing feasible ideas for realizing multi-energy field collaborative green machining of difficult-to-machine metal materials in the future.

关键词: difficult-to-machine metal material     green machining     high-speed dry milling     laser energy field-assisted milling     ultrasonic energy field-assisted milling     cryogenic minimum quantity lubrication energy field-assisted milling    

Ultrasonic assisted EDM: Effect of the workpiece vibration in the machining characteristics of FW4 Welded

Mohammadreza SHABGARD, Hamed KAKOLVAND, Mirsadegh SEYEDZAVVAR, Ramin Mohammadpour SHOTORBANI

《机械工程前沿(英文)》 2011年 第6卷 第4期   页码 419-428 doi: 10.1007/s11465-011-0246-7

摘要:

This paper presents the results of experimental studies carried out to conduct a comprehensive investigation on the influence of ultrasonic vibration of workpiece on the characteristics of Electrical Discharge Machining (EDM) process of FW4 Welding Metal in comparison with the conventional EDM process. The studied process characteristics included the material removal rate (MRR), tool wear ratio (TWR), and surface roughness (Ra and Rmax) of the workpiece after the EDM and ultrasonic assisted EDM (US-EDM) processes. The experiments performed under the designed full factorial procedure and the considered EDM input parameters included pulse on-time and pulse current. The experimental results show that in short pulse on-times, material removal rate in the US-EDM process is approximately quadruple than that of the EDM process. On the contrary, in the long pulse on-times, ultrasonic vibration of work??piece leads to the reduction in the MRR. On the other hand, in short pulse on-times, the TWR in the US-EDM process is lower than that of in the EDM process, and this condition reverses with increase in the pulse on-time. Furthermore, the surface roughness of the workpiece machined by EDM process is slightly lower than that of applied to the US-EDM process.

关键词: electrical discharge machining (EDM)     material removal rate (MRR)     tool wear ratio (TWR)     surface roughness    

Ultrasound-assisted co-precipitation synthesis of mesoporous Co3O4–CeO2 composite oxides for highly selective

《化学科学与工程前沿(英文)》 2022年 第16卷 第8期   页码 1211-1223 doi: 10.1007/s11705-022-2145-3

摘要: The one-step highly selective oxidation of cyclohexane into cyclohexanone and cyclohexanol as the essential intermediates of nylon-6 and nylon-66 is considerably challenging. Therefore, an efficient and low-cost catalyst must be urgently developed to improve the efficiency of this process. In this study, a Co3O4–CeO2 composite oxide catalyst was successfully prepared through ultrasound-assisted co-precipitation. This catalyst exhibited a higher selectivity to KA-oil, which was benefited from the synergistic effects between Co3+/Co2+ and Ce4+/Ce3+ redox pairs, than bulk CeO2 and/or Co3O4. Under the optimum reaction conditions, 89.6% selectivity to KA-oil with a cyclohexane conversion of 5.8% was achieved over Co3O4–CeO2. Its catalytic performance remained unchanged after five runs. Using the synergistic effects between the redox pairs of different transition metals, this study provides a feasible strategy to design high-performance catalysts for the selective oxidation of alkanes.

关键词: Co3O4–CeO2 composite oxides     cyclohexanone     cyclohexanol     ultrasonic-assisted co-precipitation     selective oxidation     solvent-free    

Effects of inclination angles of disc cutter on machining quality of Nomex honeycomb core in ultrasonic

Yidan WANG, Renke KANG, Yan QIN, Qian MENG, Zhigang DONG

《机械工程前沿(英文)》 2021年 第16卷 第2期   页码 285-297 doi: 10.1007/s11465-021-0631-9

摘要: Ultrasonic cutting with a disc cutter is an advanced machining method for the high-quality processing of Nomex honeycomb core. The machining quality is influenced by ultrasonic cutting parameters, as well as tool orientations, which are determined by the multi-axis machining requirements and the angle control of the cutting system. However, in existing research, the effect of the disc cutter orientation on the machining quality has not been studied in depth, and practical guidance for the use of disc cutters is lacking. In this work, the inclined ultrasonic cutting process with a disc cutter was analyzed, and cutting experiments with different inclination angles were conducted. The theoretical residual height models of the honeycomb core, as a result of the lead and tilt angles, were established and verified with the results obtained by a linear laser displacement sensor. Research shows that the residual height of the honeycomb core, as a result of the tilt angle, is much larger than that as a result of the lead angle. Furthermore, the tearing of the cell wall on the machined surface was observed, and the effects of the ultrasonic vibration, lead angle, and tilt angle on the tear rate and tear length of the cell wall were studied. Experimental results revealed that ultrasonic vibration can effectively decrease the tearing of the cell wall and improve the machining quality. Changes in the tilt angle have less effect than changes in the lead angle on the tearing of the cell wall. The determination of inclination angles should consider the actual processing requirements for the residual height and the machining quality of the cell wall. This study investigates the influence of the inclination angles of a disc cutter on the machining quality of Nomex honeycomb core in ultrasonic cutting and provides guidelines for machining.

关键词: Nomex honeycomb core     disc cutter     inclined ultrasonic cutting     machining quality    

Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0717-z

摘要: Bone grinding is an essential and vital procedure in most surgical operations. Currently, the insufficient cooling capacity of dry grinding, poor visibility of drip irrigation surgery area, and large grinding force leading to high grinding temperature are the technical bottlenecks of micro-grinding. A new micro-grinding process called ultrasonic vibration-assisted nanoparticle jet mist cooling (U-NJMC) is innovatively proposed to solve the technical problem. It combines the advantages of ultrasonic vibration (UV) and nanoparticle jet mist cooling (NJMC). Notwithstanding, the combined effect of multi parameter collaborative of U-NJMC on cooling has not been investigated. The grinding force, friction coefficient, specific grinding energy, and grinding temperature under dry, drip irrigation, UV, minimum quantity lubrication (MQL), NJMC, and U-NJMC micro-grinding were compared and analyzed. Results showed that the minimum normal grinding force and tangential grinding force of U-NJMC micro-grinding were 1.39 and 0.32 N, which were 75.1% and 82.9% less than those in dry grinding, respectively. The minimum friction coefficient and specific grinding energy were achieved using U-NJMC. Compared with dry, drip, UV, MQL, and NJMC grinding, the friction coefficient of U-NJMC was decreased by 31.3%, 17.0%, 19.0%, 9.8%, and 12.5%, respectively, and the specific grinding energy was decreased by 83.0%, 72.7%, 77.8%, 52.3%, and 64.7%, respectively. Compared with UV or NJMC alone, the grinding temperature of U-NJMC was decreased by 33.5% and 10.0%, respectively. These results showed that U-NJMC provides a novel approach for clinical surgical micro-grinding of biological bone.

关键词: micro-grinding     biological bone     ultrasonic vibration (UV)     nanoparticle jet mist cooling (NJMC)     grinding force     grinding temperature    

A review of low-temperature plasma-assisted machining: from mechanism to application

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0734-y

摘要: Materials with high hardness, strength or plasticity have been widely used in the fields of aviation, aerospace, and military, among others. However, the poor machinability of these materials leads to large cutting forces, high cutting temperatures, serious tool wear, and chip adhesion, which affect machining quality. Low-temperature plasma contains a variety of active particles and can effectively adjust material properties, including hardness, strength, ductility, and wettability, significantly improving material machinability. In this paper, we first discuss the mechanisms and applications of low-temperature plasma-assisted machining. After introducing the characteristics, classifications, and action mechanisms of the low-temperature plasma, we describe the effects of the low-temperature plasma on different machining processes of various difficult-to-cut materials. The low-temperature plasma can be classified as hot plasma and cold plasma according to the different equilibrium states. Hot plasma improves material machinability via the thermal softening effect induced by the high temperature, whereas the main mechanisms of the cold plasma can be summarized as chemical reactions to reduce material hardness, the hydrophilization effect to improve surface wettability, and the Rehbinder effect to promote fracture. In addition, hybrid machining methods combining the merits of the low-temperature plasma and other energy fields like ultrasonic vibration, liquid nitrogen, and minimum quantity lubrication are also described and analyzed. Finally, the promising development trends of low-temperature plasma-assisted machining are presented, which include more precise control of the heat-affected zone in hot plasma-assisted machining, cold plasma-assisted polishing of metal materials, and further investigations on the reaction mechanisms between the cold plasma and other materials.

关键词: low-temperature plasma     difficult-to-cut material     machinability     hydrophilization effect     Rehbinder effect    

Hole quality in longitudinal–torsional coupled ultrasonic vibration assisted drilling of carbon fiber

Guofeng MA, Renke KANG, Zhigang DONG, Sen YIN, Yan BAO, Dongming GUO

《机械工程前沿(英文)》 2020年 第15卷 第4期   页码 538-546 doi: 10.1007/s11465-020-0598-y

摘要: Carbon fiber reinforced plastic (CFRP) composites are extremely attractive in the manufacturing of structural and functional components in the aircraft manufacturing field due to their outstanding properties, such as good fatigue resistance, high specific stiffness/strength, and good shock absorption. However, because of their inherent anisotropy, low interlamination strength, and abrasive characteristics, CFRP composites are considered difficult-to-cut materials and are prone to generating serious hole defects, such as delamination, tearing, and burrs. The advanced longitudinal–torsional coupled ultrasonic vibration assisted drilling (LTC-UAD) method has a potential application for drilling CFRP composites. At present, LTC-UAD is mainly adopted for drilling metal materials and rarely for CFRP. Therefore, this study analyzes the kinematic characteristics and the influence of feed rate on the drilling performance of LTC-UAD. Experimental results indicate that LTC-UAD can reduce the thrust force by 39% compared to conventional drilling. Furthermore, LTC-UAD can decrease the delamination and burr factors and improve the surface quality of the hole wall. Thus, LTC-UAD is an applicable process method for drilling components made with CFRP composites.

关键词: longitudinal–torsional coupled     ultrasonically drilling     CFRP     thrust force     hole quality    

Novel synthetic approaches and TWC catalytic performance of flower-like Pt/CeO

Zongcheng ZHAN,Xiaojun LIU,Dongzhu MA,Liyun SONG,Jinzhou LI,Hong HE,Hongxing DAI

《环境科学与工程前沿(英文)》 2014年 第8卷 第4期   页码 483-495 doi: 10.1007/s11783-013-0595-z

摘要: A novel Ultrasonic Assisted Membrane Reduction (UAMR)-hydrothermal method was used to prepare flower-like Pt/CeO catalysts. The texture, physical/chemical properties, and reducibility of the flower-like Pt/CeO catalysts were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), N adsorption, and hydrogen temperature programmed reduction (H -TPR) techniques. The catalytic performance of the catalysts for treating automobile emission was studied relative to samples prepared by the conventional wetness impregnation method. The Pt/CeO catalysts fabricated by this novel method showed high specific surface area and metal dispersion, excellent three-way catalytic activity, and good thermal stability. The strong interaction between the Pt nanoparticles and CeO improved the thermal stability. The Ce ions were incorporated into the surfactant chains and the Pt nanoparticles were stabilized through an exchange reaction of the surface hydroxyl groups. The SEM results demonstrated that the Pt/CeO catalysts had a typical three-dimensional (3D) hierarchical porous structure, which was favorable for surface reaction and enhanced the exposure degree of the Pt nanoparticles. In brief, the flower-like Pt/CeO catalysts prepared by UAMR-hydrothermal method exhibited a higher Pt metal dispersion, smaller particle size, better three-way catalytic activity, and improved thermal stability versus conventional materials.

关键词: three-way catalyst     flower-like     Ultrasonic Assisted Membrane Reduction (UAMR)     Pt nanoparticles    

Equipment–process–strategy integration for sustainable machining: a review

《机械工程前沿(英文)》 2023年 第18卷 第3期 doi: 10.1007/s11465-023-0752-4

摘要: Although the manufacturing industry has improved the quality of processing, optimization and upgrading must be performed to meet the requirements of global sustainable development. Sustainable production is considered to be a favorable strategy for achieving machining upgrades characterized by high quality, high efficiency, energy savings, and emission reduction. Sustainable production has aroused widespread interest, but only a few scholars have studied the sustainability of machining from multiple dimensions. The sustainability of machining must be investigated multidimensionally and accurately. Thus, this study explores the sustainability of machining from the aspects of equipment, process, and strategy. In particular, the equipment, process, and strategy of sustainable machining are systematically analyzed and integrated into a research framework. Then, this study analyzes sustainable machining-oriented machining equipment from the aspects of machine tools, cutting tools, and materials such as cutting fluid. Machining processes are explored as important links of sustainable machining from the aspects of dry cutting, microlubrication, microcutting, low-temperature cutting, and multidirectional cutting. The strategies for sustainable machining are also analyzed from the aspects of energy-saving control, machining simulation, and process optimization of machine tools. Finally, opportunities and challenges, including policies and regulations toward sustainable machining, are discussed. This study is expected to offer prospects for sustainable machining development and strategies for implementing sustainable machining.

关键词: sustainable machining     equipment     process     strategy     manufacturing    

Energy saving design of the machining unit of hobbing machine tool with integrated optimization

《机械工程前沿(英文)》 2022年 第17卷 第3期 doi: 10.1007/s11465-022-0694-2

摘要: The machining unit of hobbing machine tool accounts for a large portion of the energy consumption during the operating phase. The optimization design is a practical means of energy saving and can reduce energy consumption essentially. However, this issue has rarely been discussed in depth in previous research. A comprehensive function of energy consumption of the machining unit is built to address this problem. Surrogate models are established by using effective fitting methods. An integrated optimization model for reducing tool displacement and energy consumption is developed on the basis of the energy consumption function and surrogate models, and the parameters of the motor and structure are considered simultaneously. Results show that the energy consumption and tool displacement of the machining unit are reduced, indicating that energy saving is achieved and the machining accuracy is guaranteed. The influence of optimization variables on the objectives is analyzed to inform the design.

关键词: energy saving design     energy consumption     machining unit     integrated optimization     machine tool    

density measurement for plastic injection molding via ultrasonic technology

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0714-2

摘要: Density variation during the injection molding process directly reflects the state of plastic melt and contains valuable information for process monitoring and optimization. Therefore, in-situ density measurement is of great interest and has significant application value. The existing methods, such as pressure−volume−temperature (PVT) method, have the shortages of time-delay and high cost of sensors. This study is the first to propose an in-situ density measurement method using ultrasonic technology. The analyses of the time-domain and frequency-domain signals are combined in the proposed method. The ultrasonic velocity is obtained from the time-domain signals, and the acoustic impedance is computed through a full-spectral analysis of the frequency-domain signals. Experiments with different process conditions are conducted, including different melt temperature, injection speed, material, and mold structure. Results show that the proposed method has good agreement with the PVT method. The proposed method has the advantages of in-situ measurement, non-destructive, high accuracy, low cost, and is of great application value for the injection molding industry.

关键词: ultrasonic measurement     melt density     in-situ measurement     injection molding    

Linear ultrasonic motor using quadrate plate transducer

Jiamei JIN, Chunsheng ZHAO

《机械工程前沿(英文)》 2009年 第4卷 第1期   页码 88-91 doi: 10.1007/s11465-009-0016-y

摘要: A linear ultrasonic motor using a quadrate plate transducer was developed for precision positioning. This motor consists of two pairs of Pb(Zr,Ti)O piezoelectric ceramic elements, which are piezoelectrically excited into the second-bending mode of the motor stator’s neutral surface in two orthogonal directions, on which the tops of four projections move along an elliptical trajectory, which in turn drives a contacted slider into linear motion via frictional forces. The coincident frequency of the stator is easily obtained for its coincident characteristic dimension in two orthogonal directions. The performance characteristics achieved by the motor are: 1) a maximum linear speed of more than 60 mm/s; 2) a stroke of more than150 mm; 3) a driving force of more than 5.0 N; and 4) a response time of about 2 ms.

关键词: ultrasonic motor     quadrate plate     coincident frequency     alternant contact    

Fixturing technology and system for thin-walled parts machining: a review

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0711-5

摘要: During the overall processing of thin-walled parts (TWPs), the guaranteed capability of the machining process and quality is determined by fixtures. Therefore, reliable fixtures suitable for the structure and machining process of TWP are essential. In this review, the key role of fixtures in the manufacturing system is initially discussed. The main problems in machining and workholding due to the characteristics of TWP are then analyzed in detail. Afterward, the definition of TWP fixtures is reinterpreted from narrow and broad perspectives. Fixture functions corresponding to the issues of machining and workholding are then clearly stated. Fixture categories are classified systematically according to previous research achievements, and the operation mode, functional characteristics, and structure of each fixture are comprehensively described. The function and execution mode of TWP fixtures are then systematically summarized and analyzed, and the functions of various TWP fixtures are evaluated. Some directions for future research on TWP fixtures technology are also proposed. The main purpose of this review is to provide some reference and guidance for scholars to examine TWP fixtures.

关键词: thin-walled part (TWP)     fixture     machining     fixture categories     fixture function    

标题 作者 时间 类型 操作

Recent advances in ultrasonic-assisted machining for the fabrication of micro/nano-textured surfaces

Shaolin XU,Tsunemoto KURIYAGAWA,Keita SHIMADA,Masayoshi MIZUTANI

期刊论文

Vibration characteristics and machining performance of a novel perforated ultrasonic vibration platform

期刊论文

Energy field-assisted high-speed dry milling green machining technology for difficult-to-machine metal

期刊论文

Ultrasonic assisted EDM: Effect of the workpiece vibration in the machining characteristics of FW4 Welded

Mohammadreza SHABGARD, Hamed KAKOLVAND, Mirsadegh SEYEDZAVVAR, Ramin Mohammadpour SHOTORBANI

期刊论文

Ultrasound-assisted co-precipitation synthesis of mesoporous Co3O4–CeO2 composite oxides for highly selective

期刊论文

Effects of inclination angles of disc cutter on machining quality of Nomex honeycomb core in ultrasonic

Yidan WANG, Renke KANG, Yan QIN, Qian MENG, Zhigang DONG

期刊论文

Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant

期刊论文

A review of low-temperature plasma-assisted machining: from mechanism to application

期刊论文

Hole quality in longitudinal–torsional coupled ultrasonic vibration assisted drilling of carbon fiber

Guofeng MA, Renke KANG, Zhigang DONG, Sen YIN, Yan BAO, Dongming GUO

期刊论文

Novel synthetic approaches and TWC catalytic performance of flower-like Pt/CeO

Zongcheng ZHAN,Xiaojun LIU,Dongzhu MA,Liyun SONG,Jinzhou LI,Hong HE,Hongxing DAI

期刊论文

Equipment–process–strategy integration for sustainable machining: a review

期刊论文

Energy saving design of the machining unit of hobbing machine tool with integrated optimization

期刊论文

density measurement for plastic injection molding via ultrasonic technology

期刊论文

Linear ultrasonic motor using quadrate plate transducer

Jiamei JIN, Chunsheng ZHAO

期刊论文

Fixturing technology and system for thin-walled parts machining: a review

期刊论文